Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36840320

RESUMEN

Allelopathy is a frequent interaction between species in Mediterranean ecosystems and it is also one of the proposed strategies to explain the colonisation of invasive species. To confirm the importance of allelopathic potential as a mechanism of invasion of non-native species in Mediterranean ecosystems, it would be advisable to compare the allelopathic effects of non-native plants with native plants on the same target species and thus avoid overestimating the role of phytotoxicity in the invasion process. The main objective of this work was to compare the allelopathic activity of native species typical of Mediterranean ecosystems, classified as allelopathic, with the allelopathic activity of non-native species that may have an invasive character in these ecosystems. To this end, we selected three native species (Cistus ladanifer, Pistacia lentiscus, and Pistacia terebithus) and three non-native species (Acacia dealbata, Acer negundo, and Salix babylonica), and we analysed their effect on the species Lactuca sativa and the native species Lavandula stoechas and Echium plantagineum. The tests on L. sativa showed that all species have allelopathic activity. The tests on L. stoechas and E. plantagineum revealed that P. terebinthus exerted the greatest effect, being the only species that maintained an inhibitory effect at extract concentrations of 50% and 25% in all the analysed parameters, except in germination and cotyledon emergence for E. plantagineum. There were no significant differences in the effect on germination between non-native and native species, although significant differences were found in the effect on root size in the three analysed concentrations, with the native species producing greater inhibition. In conclusion, these species exert a negative effect on the selected native target species, but the negative effect of the native species is greater than that of the non-native species. These results indicate that it is important to compare the allelopathic effects of invasive and native species to correctly estimate the phytotoxic effect of invasive species on their invasiveness.

2.
Plants (Basel) ; 9(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881648

RESUMEN

Traditional medicine is especially important in the treatment of neglected tropical diseases because it is the way the majority of populations of affected countries manage primary healthcare. We present a case study that can serve as an example that can be replicated by others in the same situation. It is about the validation of a local remedy for myasis in Amazonian Ecuador, which is contrasted by bibliographic chemical reviews and in silico activity tests. We look for scientific arguments to demonstrate the reason for using extracts of Lonchocarpus utilis against south American myasis (tupe). We provide a summary of the isoflavonoids, prenylated flavonoids, chalcones, and stilbenes that justify the action. We make modeling predictions on the affinity of eight chemical components and enzyme targets using Swiss Target Prediction software. We conclude that the effects of this extract can be reasonably attributed to an effect of the parasite that causes the disease, similar to the one produced by synthetic drugs used by conventional medicine (e.g., Ivermectine).

3.
Plants (Basel) ; 8(2)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678267

RESUMEN

Cistus ladanifer has been described as an allelopathic and autoallelopathic species, and the compounds that could be involved in its autotoxicity are the flavonoids and diterpenes present in the exudate of its leaves. The aim of this study was to determine which family of compounds, either phenols or terpenes, are responsible for the autoallelopathic activity quantified in C. ladanifer. These compounds were extracted from the exudate of young leaves collected in spring and separated by column chromatography into two fractions: diterpenes and flavonoids. The obtained results showed that flavonoids, at the tested concentrations, did not have a negative effect on any of the parameters quantified in the germination process of C. ladanifer seeds. On the other hand, the germination, seedling size and seedling establishment, quantified through the germination index and rate, were negatively affected by the tested diterpene solutions. In view of the obtained results, it was concluded that the compounds involved in the autoallelopathy process of C. ladanifer are diterpenes.

4.
Molecules ; 21(7)2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27455211

RESUMEN

In previous studies, secondary metabolites in the leaf exudate of Cistus ladanifer, specifically aglycone flavonoids and diterpenes, were demonstrated to play an ecophysiological role. They protect against ultraviolet radiation, have antiherbivore activity, and are allelopathic agents. Their synthesis in the plant was also found to vary quantitatively and qualitatively in response to various environmental factors. In view of these findings, the present work was designed to clarify whether within a single population there are differences among individuals subject to the same environmental conditions. To this end, we analyzed the leaves of 100 individuals of C. ladanifer. The results showed the existence of intrapopulational variation, since, although all the individuals had the same composition of secondary chemistry, the amounts were different. The individuals of a given population of C. ladanifer differ from each other even when growing under similar conditions. According to the ammount of flavonoids and diterpenes observed in each individual, it was possible to distinguish four different groups of individuals. Most individuals, evenly distributed within the population, had low concentrations of the studied compounds, whilst other individuals synthesized greater amounts and were randomly distributed among the former. Given the functions of flavonoids and diterpenes in this species, the quantified intra-population variation may involve greater plasticity for the species in the face of environmental changes.


Asunto(s)
Cistus/química , Cistus/metabolismo , Metaboloma , Metabolómica , Metabolismo Secundario , Análisis por Conglomerados , Metabolómica/métodos
5.
Molecules ; 21(3): 275, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26927053

RESUMEN

The compounds derived from secondary metabolism in plants perform a variety of ecological functions, providing the plant with resistance to biotic and abiotic factors. The basal levels of these metabolites for each organ, tissue or cell type depend on the development stage of the plant and they may be modified as a response to biotic and/or abiotic stress. As a consequence, the resistance state of a plant may vary in space and time. The secondary metabolites of Cistus ladanifer have been quantified in leaves and stems throughout autumn, winter, spring and summer, and at different ages of the plant. This study shows that there are significant differences between young leaves, mature leaves and stems, and between individuals of different ages. Young leaves show significantly greater synthesis of flavonoids and diterpenes than mature leaves and stems, with a clear seasonal variation, and the differences between leaves at different growth stages and stems is maintained during the quantified seasons. With respect to age, specimens under one year of age secreted significantly lower amounts of compounds. The variation in the composition of secondary metabolites between different parts of the plant, the season and the variations in age may determine the interactions of Cistus ladanifer with the biotic and abiotic factors to which it is exposed.


Asunto(s)
Cistus/química , Cistus/crecimiento & desarrollo , Diterpenos/análisis , Flavonoides/análisis , Extractos Vegetales/análisis , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Estaciones del Año , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...